5 Key Benefits and Applications of Silicone Gaskets

Silicone gaskets are resistant to UV, ozone, water, and corrosion, and they provide excellent performance across a wide range of temperatures. These flexible, durable, and resistant sealing solutions deliver various benefits that make them ideal for use in several industries and applications.

Benefits of Silicone Gaskets

Silicone gaskets provide the following advantages:

 

  • Thermal stability. Silicone gaskets can withstand temperatures between -40 and 230° C. They remain flexible at both low and high temperatures without becoming brittle or losing their shape and durability.
  • FDA approved. Silicone is an FDA-approved material, meaning silicone gaskets can be used in industries such as food processing, healthcare, medical, and others that require non-toxic materials.
  • Environmental resistance. High-temperature silicone gaskets are flame-retardant for use in high-heat applications like telecommunications and mass transportation. They are ideal for outdoor applications due to their resistance to water, UV, ozone, and various temperatures. Silicone gaskets can also hold up to various chemicals, including solvents, oil, acids, bases, and more.
  • Durability. Due to its resistive properties, silicone offers excellent durability. This makes them a cost-effective option because they can last a long time without showing wear or requiring maintenance.
  • Electrically conductive. Silicone gaskets conduct electricity, allowing them to provide electromagnetic interference (EMI) shielding for electrical components.

Applications of Silicone Gaskets

Various applications rely on silicone gaskets to prevent fluid leakage. These include:

 

Food Processing

The food industry depends on FDA or food-grade silicone gaskets for various processing applications to ensure compliance with health and safety standards. Silicone is a popular choice in this industry due to its excellent sealing properties and high temperature rating. Various food processing machines and equipment rely on silicone gaskets, such as cake mixers and dough mixers in industrial bakeries.

 

Oil & Gas

Silicone gaskets resist oils, fuels, and a range of chemicals. The oil and gas industry depends on silicone materials like fluorosilicone gaskets to withstand extreme temperatures and seal oil, fuel, and coolant. Fluorosilicone resists wear and abrasion, making it suitable for static and dynamic sealing applications.

 

Aerospace

The aerospace industry relies on silicone gaskets to seal aircraft and space shuttle components, such as engine parts, vent ducts, door and window seals, and more. Aircraft equipment must not fail during operation, and silicone gaskets deliver the reliability necessary for the harsh conditions aircraft components face. Silicone gaskets resist ozone, UV rays, and extreme temperatures, making them preferred for aircraft.

 

Transportation

The strength, durability, and stability of silicone rubber gaskets make them ideal for industrial, commercial, and consumer vehicles as well as buses, trains, and heavy machinery. Silicone gaskets can dampen vibration and seal out external factors, providing a high-performance seal for radiators, HVAC components, interior doors, and electrical enclosures.

 

Medical & Healthcare

Silicone gaskets are ideal for medical and healthcare applications. The material resists the growth of bacteria and repels moisture, making it suitable for sealing medical equipment and prosthetics. Silicone is biologically inert and non-toxic, and its thermal stability means it can be sterilized and stored at high temperatures. Silicone gaskets also pass biocompatibility testing, meaning they can be used in various medical devices that come into contact with human skin.

 

Construction

Building and construction applications rely on silicone gaskets to seal doors, windows, and electrical equipment enclosures. Silicone is ideal for providing a watertight seal, and it is perfect for various outdoor construction applications due to its ability to withstand UV rays, weather, ozone, and various temperatures.

 

Electronics

Silicone gaskets are suitable for a variety of electronic devices and equipment. They can keep water from entering the device and protect the components from heat, corrosion, and EMI.

Silicone Rubber Gaskets From Fournier Rubber & Supply Company

Silicone rubber gaskets offer a variety of benefits and provide a reliable seal for a wide range of applications. At Fournier Rubber & Supply Company, our superior rubber products have been satisfying customers for nearly 90 years. We offer a range of custom silicone gaskets for every application. Contact us to learn more about our silicone gasket solutions or request a quote today.

EPDM vs. Silicone Rubber

Rubber is used in the manufacture of countless parts and products. Given the many rubber materials available, manufacturers can choose a variation that suits their exact part and production needs, ensuring the finished component operates and performs as intended. However, the broad selection can also make it difficult to select the right material. It is important to carefully evaluate the unique characteristics of each rubber option to ensure you choose the one that is best suited for your
requirements and restrictions.

Two of the most commonly utilized rubber materials are ethylene propylene diene monomer (EPDM) rubber and silicone rubber. Below, we highlight the characteristics of each material to help you determine which—if any—of the materials are suitable for your application.

Overview of EPDM Rubber

Click to ExpandEPDM vs. Silicone Rubber

Ethylene propylene diene monomer (EPDM) rubber is a synthetic rubber. It exhibits high tensile strength and retains flexibility in a wide range of temperatures (between -40° C and +130° C). Additionally, it is extremely resistant to abrasion, heat, oxidation, UV, ozone, water, acids, alkalis, and steam. However, it can swell when exposed to oils and petroleum.

Due to its excellent durability, EPDM is commonly used for applications involving exposure to extreme weather conditions and outdoor environments (e.g., construction and roofing). Additionally, its electrical resistance makes it ideal for use in certain electrical applications.

Some of the industries that commonly use EPDM rubber include:

  • Automotive
  • Construction
  • Consumer appliances
  • Electrical/electronics
  • General industrial
  • HVAC

Overview of Silicone Rubber

Silicone rubber is a polymer consisting of carbon, hydrogen, oxygen, and silicone. It is valued for its extreme temperature resistance and broad thermal stability (-60° C and +230° C). It also has extremely high tensile strength, exceptional flexibility, and excellent tear resistance. It can also retain its shape after being compressed for long periods of time and resist damage stemming from chemicals, UV radiation, ozone, fire, water, and microbial growth.

The durability of silicone makes the material ideal for a wide variety of industrial applications. Its formulation can also be easily modified to suit specific needs. For example, food-grade silicone materials are available for use in food and beverage industry applications. However, it is important to note that certain silicone rubber formulations may swell or become damaged when exposed to water. Additionally, it is generally not recommended for use with abrasive substances, steam temperatures
greater than 121° C, hydrocarbons, acids, and alkalis.

Some of the industries that commonly use silicone rubber include:

  • Aerospace
  • Automotive
  • Construction
  • Consumer goods
  • Food and beverage
  • Medical

Superior Rubber Solutions From Fournier Rubber & Supply Company

Want additional help choosing between silicone rubber and EPDM rubber for your application? Ask the experts at Fournier Rubber & Supply Company. We’ve worked with a broad selection of natural and synthetic rubber for over eight decades. This extensive experience provides us with the knowledge and skills necessary to help you find the perfect material for your needs.

If you have any questions or concerns about a specific rubber material or rubber material options in general, contact us today. Our team is ready and willing to help you discover the right solution for your product and application.

O-Ring Material Selection Guide

O-rings

At Fournier Rubber & Supply, we have hundreds of O-rings available in different sizes and materials for virtually any commercial, consumer, and industrial application. Choosing the right O-ring guarantees better performance, so we’ve compiled this guide to different types and materials to help you select the best type of O-ring for your needs.

Rubber O-Ring Types

Click to Expand

O-Ring Material Selection Guide

Rubber materials are cost-effective and hold their shape well, making them ideal for use in sealing applications. Some of the most popular rubber material options we have in our O-ring inventory include:

  • Silicone O-rings. Silicone resists fatigue, flex damage, and damage from high temperatures. It can also withstand ozone and UV radiation for outdoor applications. These O-rings provide insulation, flexibility, and reliable sealing capabilities in static use cases.
  • EPDM O-rings. Ethylene propylene diene monomer (EPDM) rubber is a cost-effective synthetic material that resists damage from mild chemicals, acids, and steam. These O-rings are commonly used in water systems, automobiles, and manufacturing and production systems for food, dairy, and pharmaceutical products.
  • Neoprene O-rings (chloroprene). Neoprene is an excellent material for outdoor O-ring applications where the component will face exposure to the elements. Neoprene O-rings resist damage from weather, water, oxidation, and UV radiation. They also withstand exposure to coolants and ammonia, making them a popular choice for refrigerator assemblies.
  • Viton O-rings (fluorocarbon elastomer). Viton is a relatively hard rubber that retains its characteristics in temperatures from -20°F to 400°F. It features excellent resistances to chemicals, fire, weather, and oils. It also resists physical damage, providing long-term performance in rough conditions.
  • Nitrile (NBR) O-rings. Nitriles—especially high-concentration nitriles—resist oils and fuels, so they won’t break down in the presence of these and other petroleum products. This makes them an excellent choice for use in fuel systems and machinery. The material also complies with many military material standards. Of note, nitrile O-rings can become inflexible at low temperatures.
  • Clear O-rings. These thin, flat O-rings are transparent, making them an ideal choice for highly visible applications or sensitive assemblies that need high standards of cleanliness. Clear O-rings are chemically inert, non-toxic, and odorless, so they won’t interfere with the production of consumable goods. Most clear O-rings are made from silicone compounds.
  • Teflon O-rings. Polytetrafluoroethylene (PTFE)—commonly known by the brand name Teflon—is a synthetic alternative to elastomers that resists corrosion, works well in electrical environments, and retains its positive characteristics across a wide temperature range. PTFE O-rings also have an extremely long lifespan.
  • Teflon-encapsulated O-rings. Teflon encapsulation gives these O-rings an excellent level of chemical resistance. Because these O-rings have a rubber core, they retain flexibility and resistance to high temperatures.
  • Aflas O-rings (TFE/P). Aflas O-rings offer resistances to steam, water, other chemicals, high temperatures, and caustic environments. This makes them ideal for use in processing assemblies that handle the production of liquid goods, such as oil.
  • Metric O-rings. For equipment and assemblies measured in metric units, these O-rings are measured in millimeters for easy sourcing and ordering of O-rings that fall outside of normal AS568 sizes.
  • Urethane O-rings. Polyurethane rubbers include polyester urethane (AU) and polyether urethane (EU), both of which are strong and wear-resistant. Polyester urethane O-rings can resist oils and solvents, though they may weaken when exposed to water. Polyether urethane O-rings can resist low-level fuels and oils while also resisting hydrolysis.

Fournier Rubber & Supply also provides custom O-rings constructed from vulcanized rubber upon request.

Factors to Consider When Choosing O-Ring Material

As you select materials, keep these important factors in mind:

  • Properties. The type of material you choose may have a long or short lifespan, may require different production techniques, and can cost more or less than comparable materials.
  • Temperature. Consider the operating temperature your O-ring needs to function within. Nitrile-based O-rings are popular for high-temperature applications, whereas different silicones can resist wider temperature ranges.
  • Flexibility. The inner diameter of your O-ring must be smaller than the installation groove in its mating component, and it must stretch to fill that groove. This characteristic helps ensure a reliable seal.
  • Pressure. Consider the hardness of the material. A higher application pressure for the O-ring will require higher shore hardness.
  • Size. Choose the appropriate size based on the size of the mating surface’s groove—both diameter and the groove’s width—and the flexibility of the material.
  • Surface finish. O-rings should fall within a tight surface roughness range of 5-16 µ inch RMS to minimize the risk of friction or accelerated wear.

Choosing the Right O-Ring Supplier

O-rings must be constructed from the right material to withstand environmental conditions and offer reliable performance during operations. Beyond material, it’s just as important to choose the right supplier. Look for an O-ring supplier that can:

  • Meet your material and production requirements
  • Operate within your timeline and budget
  • Offers customization
  • Provide reliable delivery

To see how Fournier Rubber can meet your needs as an O-ring supplier, please contact us today.

Everything You Need to Know About the Different Types of Rubber: Names, Properties, and Uses

Founded in 1933, Fournier Rubber & Supply Company has since established itself as an industry-leading supplier of gaskets and rubber and plastic products. We offer high-quality industrial rubber products from reputable manufacturers and, for highly specialized or unique applications, custom manufacturing capabilities for custom-tailored gaskets and hose assemblies. Equipped with over 80 years of experience handling rubber materials, our team is well-aware of the unique characteristics demonstrated by each of the different types of rubbers.  

Rubber is an elastic material that can be produced naturally from various plant sources or synthetically through a variety of chemical processes. It has been in use for thousands of years, during which time it has been produced in numerous variations with distinct characteristics that make them suitable for different applications.

It serves as an essential raw material in the production of everything from automobile tires to surgical gloves. However, successfully producing these components necessitates choosing the right type of rubber for the given part design and application environment. For this reason, we’ve provided an overview of some of the most commonly available rubber types, outlining what they are, their key properties, and their typical uses. 

Basic Properties of Rubber

As indicated above, rubber comes in several variations, each of which has unique properties. However, most—if not all—rubbers also share a few common characteristics, such as:

  • Elasticity: The molecular structure of rubber materials allows them to return to their normal shape after being compressed or stretched. This characteristic is apparent in rubber bands. Stretching or compressing a rubber band temporarily pulls or pushes the individual molecules out of alignment with each other. As the molecules are attached to one another, they return to their original position once the stretching or compressing force is removed.
  • Thermal contraction: While most materials expand when heated, rubber contracts. This unusual phenomenon results from how the rubber molecules respond to heat. When heat is applied, the already-tangled molecules become more tangled and twisted. When heat is removed, the molecules return to their resting state and the rubber regains its original shape.
  • Durability: Most rubbers are highly durable, resisting damage and degradation from abrasive and tearing forces, impact, low temperatures, and water. They also exhibit a relatively slow heat buildup rate. 

Types of Rubber

Each type of rubber material—whether natural or rubber—demonstrates distinct properties that make it suitable for certain applications. Some of the most common types of rubber and their properties include:

Natural Rubber

Natural rubber—also known as India or gum rubber—is derived from the milky liquid (i.e., latex) present in the Hevea brasiliensis tree. Some of the material’s key characteristics are high tear and tensile strength, resilience, and resistance to abrasion, friction, extreme temperatures, and water swell. Typical uses include adhesives, flooring and roofing, gloves, insulation, and tires. 

Neoprene Rubber

Neoprene rubber—also called chloroprene—is one of the oldest types of synthetic rubber. Compared with natural rubber and other synthetic rubbers, it exhibits an exceptionally low susceptibility to burning, corrosion, and degradation. This quality makes it the perfect base material for adhesives and corrosion-resistant coatings. Its ability to maintain good mechanical properties over a wide temperature range also suits it for use in high-pressure gaskets, belts, and window and door seals.  

Silicone Rubber

Silicone rubber—also referred to as polysiloxane—is known for its malleability, biocompatibility, and resistance to extreme temperatures, fire, ozone, and ultraviolet (UV) radiation. It is available in both solid and liquid forms in a variety of colors. Its chemically inert nature makes it ideal for use in parts and products that demand biocompatibility (such as gloves, respiratory masks, implants, and other medical products) and chemical resistance (such as baby care items, cosmetic applicators, and food containers and instruments). 

Nitrile Rubber

Nitrile rubber—also known as Buna-N rubber or nitrile butadiene rubber (NBR)—demonstrates several desirable mechanical and chemical properties, such as resistance to compression set, heat, oil and gas, and wear. These traits make it suitable for use in automotive gaskets and seals, O-rings, and engine hoses. It is also used in medical products (e.g., surgical gloves) since it lacks the allergenic proteins of latex-based rubbers and maintains its structural integrity better than silicone rubber. 

EPDM Rubber

Ethylene propylene diene monomer (EPDM) rubber is a synthetic rubber that exhibits excellent durability, resisting damage and degradation from extreme temperatures and weather conditions. These qualities make it suitable for use in outdoor parts and products, such as roofing sealants, hoses, and seals. Its superior noise and thermal insulation properties also suit it for use in automobile systems. 

Styrene-Butadiene Rubber (SBR)

Styrene-butadiene rubber (SBR) is a copolymer of styrene and butadiene characterized by its superior hardness and durability. It demonstrates better abrasion, alcohol, compression set, and water swell resistance than some of the more expensive synthetic rubbers, which makes it ideal for use in seals integrated into hydraulic brake systems. Other common uses include cutting boards, gaskets, and shoe soles. 

Butyl Rubber

Butyl rubber—also known as isobutylene isoprene—offers one of the highest levels of gas impermeability. This quality, combined with the material’s excellent flexibility, makes it suitable for the manufacture of airtight components, such as inner tubes, sport balls, and sealants. As a liquid compound, it is also often used as an additive in diesel and petroleum fuels and chewing gums.

Fluorosilicone Rubber

Fluorosilicone rubber—also called FVMQ—is highly resistant to extreme temperatures (-100–350 degrees Fahrenheit), transmission fluids, petroleum oils and fuels, synthetic lubricants, fire, and ozone. These properties make it an ideal material for aircraft fuel systems and other highly specialized industrial applications.

Contact the Rubber Experts at Fournier Rubber Today

The above guide serves as an overview of the different types of rubber and their properties to help customers determine which material is best-suited for their applications. If you have additional general questions about rubber material or specific questions about a particular rubber material, turn to the experts at Fournier Rubber. 

At Fournier Rubber & Supply Company, we’ve worked with both natural and synthetic rubber for over eight decades. By leveraging the knowledge gained for this experience, we can identify or custom manufacture rubber gaskets, hose assemblies, and other products for a wide range of customer needs. To learn more about rubber or our rubber products and services, check out our About Us page or contact us today.